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Abstract-A general formalism is presented for the combined diffusion and forced flow of a binary gas 
mixture through a porous medium. The resulting equations are then specialized to handle the vapor region of 
a porous material which is drying according to a receding evaporation front model. Solutions presented for 
various permeabilities and temperatures give the conditions under which air is present in the pores and allow 
one to investigate the usefulness of the ‘boiling’ concept for the drying of low permeability materials. 
Evaporation front motion together with the water loss rate is examined for different curvilinear geometries 

both ~~ytically and numerically. 

NOMENCLATURE 

constant defined in equation (72); 
binary gaseous diffusion coefficient ; 
Knudsen diffusion coefficient ; 
flux [number/(area x time)]; 
Boltzmann constant; 
thermal conductivity; 
latent heat of vaporization ; 
normalization length; 
geometry indicator ; 
mass of gas molecule; 
number density; 
pressure ; 
mean pore radius; 
position coordinate; 
constant defined by equation (45); 
temperature ; 
time ; 
evaporation front velocity; 
mean gas velocity in axial direction ; 
thermal velocity; 
Darcy velocity, equations (24) and (25) 
only ; 
external force exerted on gas i molecules ; 

Greek symbols 

a, thermal diffusivity; 

Yz dimensionless constant defined by equa- 
tion (67); 

6, dimensionless constant defined by equa- 
tion (92); 

% dimensionless constant defined by equa- 
tion (37); 

fc, permeability ; 

Pt viscosity of gas mixture; 
P* mass density; 

5. dimensionless constant defined by equa- 
tion (38); 

#? porosity. 

Subscripts 
a, air; 

amb, ambient (drying atmosphere); 

f, evaporation front ; 
I, gas component 1 or 2; 

K, Knudsen ; 
1, liquid ; 
0, reference condition ; 
V, vapor ; 
vap, equilibrium vapor. 

Superscripts 

th, thermal ; 
3 quantity evaluated in moving coordinate 

system ; 
averaged over pore diameter; 
non-dimensional. 

1. INTRODUCTION 

WATER loss by evaporation from porous materials is 
an area of study which has many diverse applications. 
Early work in this area was concerned mostly with 
agricultural applications [l, 21 (drying of soils) and 
industrial applications in the field of chemical 
engineering [3]. More recent work has expanded to 
include the drying of concrete [4], and other molded 
materials [5]. Still another area of interest has opened 
up due to investigations of the use of geological 
formations as repositories for nuclear waste canisters 
[6]. In the latter case, heat generated by the waste 
canisters leads to drying of the surrounding rock. 

Several decades of research in the area of drying of 
porous solids has led to the acceptance of two main 
theories of drying. In the first, movement of water takes 
place to the drying surface as the result of capillary 
forces acting within the pores. This kind of model has 
led to a ‘diffusion’ theory governed by a highly non- 
linear diffusion equation [7], and has received con- 
siderabie attention in the soil physics literature. In the 
second, water transport occurs as a vapor through a 
region of ‘dry’ material from a receding evaporation 
front. Usually the liquid or ‘wet’ region is taken as 
stationary, with front ‘motion’ occurring only due to 
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evaporation into the vapor phase. The latter model 
seems most applicable where water loss rates are high 
and capillary forces are not sufficient to smear out the 
front. Drying which takes place at elevated tempera- 
tures is one example where conditions are likely to 
favor the evaporation front model over the diffusion 
model. The remainder of this paper will concentrate 
exclusively on the evaporation front model. 

The primary emphasis of the present paper is on a 
more complete treatment of the vapor region in an 
evaporation front drying process. Gupta [S] and 
Mikhailov [9] treat the front as being controlled by 
heat balance, in which case a detailed treatment of the 

vapor region is unnecessary. Such a model is only 
applicable in situations where the evaporation front is 
at a known temperature, or other information con- 
cerning the temperature profile is available. The calcu- 
lation thus reduces essentially to a solution of the heat 
equation with latent heat effects included at the front 
position. Mikhailov [9] has also included a calculation 

in which the vapor flux is governed by Darcy’s law, as 
have Cross et al. [lo] and Hohlfelder and Hadley [6]. 

This treatment is shown below to be valid only within 
certain parameter regimes since it ignores binary gas 
effects such as diffusion as well as molecular effects 
which are important for materials with a small average 
pore size. In general, these refinements may not be 

ignored except in certain special cases which will be 
examined in detail below. 

The theoretical treatment presented here is of 
sufficient generality to include most of the cases 
mentioned above. It does, however, necessitate some 
simplifying assumptions which are as follows: 

(1) All effects arising from surface tension forces are 
excluded. All liquid water is assumed stationary. 

(2) The porous medium is assumed to have a 
unimodal pore distribution, so that a well-defined 
average pore radius exists. The pore structure is 
modeled as straight capillary tubes. 

(3) The vapor flux emanating from the evaporation 
front is sufficiently small so that the partial pressure of 

water vapor at the front is given by the equilibrium 
value. 

(4) Both air and water vapor are treatable as ideal 

gases. 
(5) All viscous flow is assumed to be laminar 

(obeying Darcy’s law at high pressures). 

(6) A sharply-defined evaporation front is assumed 
to separate a region of 100% saturation (all voids filled 
with liquid H,O) from a region of zero saturation (all 
voids contain gases only). 

(7) Vapor motion velocities are large compared 
with front velocities so that all vapor obeys the steady 
state continuity equation at any given time. 

2. GENERAL VAPOR REGION EQUATIONS 

The diffusion and flow of a mixture of gases through 
a porous medium is a very complex and difficult 
problem. The most thorough treatment of this prob- 
lem appears to be the series of articles by Mason, 

Evans and Watson [ 1 l- 131, culminating several years 
later in the paper by Mason, Malinauskas and Evans 
[14]. Although the transport equations derived in this 
section are essentially identical to those presented by 
Mason et al. [14], a thorough derivation is included 
herein for two reasons: (i) the result is obtained in a 
simpler manner than the previous development, and 

(ii) their additive relation for viscous effects is shown to 
arise naturally from a coordinate transformation. 

Let us first consider the flow and diffusion of a 
binary gas system through a single capillary tube of 
fixed radius R. Hirschfelder, Curtiss and Bird [15] 
show that the momentum equation for such a mixture 
is identical to that for a single gas if the gas velocity is 
replaced by the mass average velocity of the mixture. 
Consequently we have for steady non-accelerating 
flow 

ap p a au 

z=rirr ‘ar c > 
where z and r are the axial and radial coordinate, 
respectively, p is the mixture viscosity, and 

v= 
mlnlvl + m2n2u2 = plul + p2v2 

mlnl + m2n2 P 
(2) 

The subscripts 1 and 2 refer to the component gases. 
The solution to equation (1) for ap/az constant is the 
well-known equation for Hagen-Poiseuille flow 

r2 - R2 dp 
v(r) = v. + ___- 

4p dz 

The mean velocity is found by averaging equation (3) 
over the cross-section of the tube, and is 

v= Ilo R2 ap ---. 
8/i ?z (4) 

The so-called ‘slip velocity’ v,, arises from molecular 
interactions and is thus directly related to the pheno- 
mena of Knudsen diffusion and binary gaseous dif- 
fusion. The mass average velocity profile is shown in 
Fig. 1. 

If we define 

R2 (7~ 

vD= -Gz 
(5) 

then equation (4) may be written 

d = lie + VD. (6) 

The form of equation (6) suggests a transformation 
into a coordinate frame moving with velocity vD 
relative to the laboratory frame. Denoting quantities in 
the moving frame with primes, we have 

0’ = d - VD = vg, (7) 

that is,velocities in the primed frame are on the average 
due to molecular effects only. We may also decompose 
equation (6) into 

fii = vi0 + UD. (8) 
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for each gas species since equation (8) may be regarded 
as the definition of vie. Note that combining equation 
(8) for both values of i reproduces equation (6). In the 
primed frame we next apply the diffusion equation 
given in Hirschfelder et al. [15] 

x_-_ 
> 

(9) 

where D, 2 is the binary diffusion coefficient between 
the two gases, pI is the partial pressure of gas 1, and Xi 
is the external force/molecule exerted on gas i. Here we 
have neglected the thermodiffusion term and in- 
troduced the number fluxes Ji = nit& with ni the 
number density of gas i. In this case the only external 
forces are those exerted by the walls of the capillary 
tube due to collisions. Since Knudsen diffusion in- 
volves only gas-wall collisions, we may derive a form 
for the x’s by considering the Knudsen formula [16] 
for a single gas 

Jio = _ f?$ 2 

which has been generalized from [ 161 to include non- 
uniform temperature effects. Here Ji, is the flux of 
molecules of gas i relative to the wall, and Di, is the 
Knudsen diffusion coefficient 

Di, = ; Rvih (11) 

with 

(12) 

Balancing forces on a cylinder of gas i then gives 

(13) 

In order to apply equation (13) to the mixture problem 
at hand, we need the flux of gas i relative to the wall 
expressed in primed variables. From equations (7) and 
(8) we obtain 

Ji, = Jfo + nivD = (Jj - niv,,) + nivD = JI. (14) 

Inserting equations (13) and (14) into equation (9) 
gives 

-p& 
v=o v, v 

FIG. 1. Mass average velocity profile for flow through a 
capillary tube. 

n,J; - n,J; 

n2D12 

lap, kT J =--++ 
P az PDIK l 

vl ap 
[ 

- n,X; - n,X; 1 . PP az 
(15) 

The term in brackets is zero since without viscous 
effects (in the primed frame) the net pressure gradient 
must balance the total force exerted by the wall. 
Consequently equation (15) may be rearranged to read 

g(n,J; - nlJ;). (16) 
12 

Applying the transformation (7) back into the lab 
frame then gives 

+ g(n2J1 - n,J,). (17) 
12 

The companion equation to equation (17) may be 
obtained by interchanging indices since the gases are 
formally equivalent 

J = n2R2 ap DZK ap2 
2 kT az 8p t3z 

+ g(nlJ2 - n,J,). (18) 
I2 

Equations for a porous medium may be obtained 
from equations (17) and (18) by multiplying through 
by 4 and defining 

and 

Ji, = 4Ji 

(19) 

M2 
K=-. 

8 

Omitting the subscript p for clarity, the final equa- 
tions are then 

J = _ 6DlKaPl QKaP __~ 
1 kT az P az 

+ ghJ2 - n2J,) (20) 
12 

and 

J = _ 4DzK ap2 n2K ap 
2 

kT dz P az 

+ $(n,J, - nlJ2) (21) 
12 

where now the J’s are ‘filtration’ fluxes, i.e. averaged 
over the porous material. Note that equations (20) and 
(21) are consistent with the decomposition used in 
equation (8). Also, tortuosity effects have not been 
specifically included but are implicit in the formalism 
since both DiK and K are measured quantities. 

Considerable insight and confidence may be gained 
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regarding equations (20) and (21) by examining two The axial variable z has been replaced by r since a 

interesting limits : radial pore coordinate is no longer needed. The 
equation of state for each component is thus 

(1) Single gas 
Here we put n2 = J, = 0 to get the single equation pi = CiT. (33) 

J = _ 4mK aPl n&P1 
In addition we define 

1 kT dz P az 
(22) 

Jil 

Ji = &,D,,(P,> To) ’ 
(34) 

Since K varies roughly as R2, we see that for R -+ 0 we - _ 
recover the Knudsen limit 

J 

1 

= _ @‘I, ah 
kT (?z 

and for R + #x we recover Darcy’s law 

where we have defined the Darcy velocity by 

J, 
V ,D=--. 

n1 

(2) Binary di$usion limit 

B = D,z(P~ T) 

I2 D,,(P,, To) 

(23) and 

6, = DiK(T) 

(24) 
IK DiK(To) ’ 

together with the parameters 

DiK(To) 
Vi = 

D,,(P,, To) 
(25) 

and 

In the limit of large pore size, high porosity and low 
flux, we may put ap/dz = 0 and 4 = 1 in equation (20) 

and multiply through by nD,,/D,, to get 

5= 
~W,z(pov To)’ 

Equations (20) and (21) then become 

nD12Jl 
dlKiijl ?- 

n,J, - n,J, = ~ 
nD12 ah 

+kTSz. 
(26) 

J, = - 111 FTg - vi, $ 
D 1K 

v PoK 

As R + x the first term on the RHS vanishes [c.f. 

equation (II)] and equation (26) may be written 

which is the standard form of the diffusion equation 
found in Hirschfelder, Curtiss and Bird [15] for con- 
stant total pressure and no external forces. Thus as the 
porous medium vanishes, the standard diffusion equa- 
tion is recovered as expected. 

3. NON-DIMENSIONALIZATION 

We first wish to non-dimensionalize all quantities in 

equations (20) and (21). All vapor properties are 
normalized to the reference conditions no, po, To which 

are related by 

p. = n,kT,. (28) 

Introducing a characteristic length 1. we thus define 

t=n, (29) 
ho 

p=P, 
PO 

&&, 
0 

(30) 

(31) 

(35) 

(36) 

and 
nlJ2 - n2Jl 

rl2 
=D,,$ : 0 (27) 

.Z 

and 

(32) 

(37) 

(38) 

--(c2.7, - itl.7,). (40) 

4. DRYING EQUATIONS 

We will now specialize equations (39) and (40) to 
apply specifically to drying problems. Figure 2 shows a 
porous medium extending to the right from f = 1 in a 
general curvilinear geometry with an evaporation front 

at i = ft. We replace the indices 1 and 2 by v (water 
vapor) and a (air) respectively. Since air cannot 
penetrate the front we have j, = 0 immediately. 
Equations (39) and (40) then reduce to 

and 

Ifwe now multiply equation (41) by u., equation (42) 
by n, and add, we get 

ab Jv 
$ = - (rf,/P2) + <vi” + Stia) 

(43) 
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where we have used [c.f. equations (1 l), (12) and (36)] 

6,, = d,, = 7’12 (44) 

and have defined 

(45) 

Rearranging equations (41) and using equation (44) 
gives 

where 

so that 

p’=O.98 x lO’Nm_* 

T’ = 256K 

d,, = i;‘.B’/@. 

(49) 

Then with the same approximations, equation (42) 
may also be integrated to yield 

Equations (43) and (46) are the basic working 
equations for drying problems. With the addition of a 
continuity equation, they may be solved as a two-point 
boundary value problem with boundary conditions 

_ _ 
P = Pamb 
- _ ati=l 
P” = P”0 

and (47) 
_ _ 

P” = Pvap at i= Ff 

where pvap is the equilibrium partial pressure of water 
vapor in the presence of liquid water, and pamb is the 
total pressure (usually atmospheric) at the drying 

surface. 

(a) Large Jux /3uo/ >> 1. 
This case arises due to either high pressures 

[@((r;) >> l] or high permeabilities (5 >> 1). Since p(F) > 
1 and 5, q are positive while jVo is negative, it follows 
that ri,(F) satisfies the inequality 

1 - 
l(F) < T 

E [ 
exp &(i- 1) 1 . (51) 

C 

The nature of equations (43) and (46) may be more Thus in this case ‘i, decays quickly to zero as we move 
fully understood by further specializing to the isother- into the material, i.e. most of the pore space is pure 
mal case F = TT, in planar geometry. In that case J, = 
J,, (a constant) is the continuity equation, and if we 

water vapor. This arises from the large flux of water 

vapor ‘expelling’ the air due to molecular collisions 
approximate S by unity, then q, = qV = q and we may (binary diffusion). In this case ignoring the air com- 
obtain analytic solutions. Numerical solutions show ponent altogether, as has often been done [5,6. lo] is a 
the results to be essentially unaffected by the change good approximation. Since the gas component at i = 
from S = 1.25 to S = 1. Now equation (43) integrates Ff is all water vapor, we may now solve equation (48) 
directly to for J,, 

2J”OFC - 
1 

1:2 

r (r-1) (48) 

where p = 1 has been used as the F = 1 boundary 

condition. The binary diffusion coefficient for air and 
water vapor is given by [17] 

T 1.81 
D,, = 2.302 p’ F 

O( > 
x 10m5 m* s-l 

P i_ _ 
Y 

P” = p,ap 

$ = Fvo 

zxL 
P i Pat, I FRONT 

1 MOTION 

I 
7-O 7= 1 T;i 

FIG. 2. Schematic of typical drying problem with boundary 
conditions. 

+ +Jr= 1) (50) 
C 1 

where ii= = l/Tj‘, has been used at F = 1. We now 
analyze equations (48) and (50) in three limiting cases: 

- (& + yr] (52) 

When hap >> 1 and 5 >> q, equation (52) becomes 

which is the approximate non-dimensional form of 

Darcy’s Law for this problem. On the other hand, if the 
permeability is low 

( 
5 -+ o,? >> & >> 1 

> 
) 

then equation (52) becomes 

j”, = _ ‘I& 
7-6’2 (r; - 1) 

(54) 

which is the approximate form of the Knudsen dif- 
fusion equation. The striking difference between equa- 
tions (53) and (54) is the power of bVap. In the Darcy 
flow case, the flux is proportional to fi:ap, whereas for 
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Knudsen diffusion it is proportional to &,. Since &._, 
is a strong function of temperature, the two mech- 
anisms will exhibit considerably different tempera- 
ture dependences. 

(b) Knudsen limit, 5 -+ 0 
Since K cc R2 while q x R, as the pore size R 

decreases, n/t + ~3. In this limit we may expand 
equation (48) to read 

Ij=l- 
J”,T;“(r’- 1) 

rl 
Consequently in the Knudsen limit the pressure is 
linear with f. Note that for large iequation (55) agrees 
with equation (54) but equation (55) is also valid for 
pressures @approaching unity. Equation (50) becomes 
(for < + 0) 

ri, = + exp[J,,(i - l)?.;“.81]. 
‘ 

(56) 

For large fluxes, 4 vanishes inside the porous medium 
as before. However for small jVo, we may expand 
equation (56) to give 

ri, = l/Fc + J”,(i - 1)T; Is* 

and using equation (55) 

(57) 

Pi” = - J;,(i- 1) (58) 

In this case the gas near the evaporation front may be 
nearly all air, but a simple model for Knudsen diffusion 
which neglects the air is still valid. This may be seen by 

evaluating equation (58) at i = fr with q << 1 (implied 
in the limit 5 + 0) to get the Knudsen limit 

(c) Di$usion limit 
As the pore size R increases at constant temperature, 

a point is reached where the porous medium no longer 
offers resistance to the moving water vapor. At that 

point the flux is limited by binary diffusion of water 
vapor through the air. We investigate this limit by 

taking 5 + x in equation (48) to get 

It is clear from equation (60) that for large 5 and 
moderate fluxes the pressure approaches 1 everywhere. 

Inserting equation (60) into equation (50) and taking 
q -+ -X along with < gives 

li, = + exp [JVo(F - l)~:“.81] 
E 

++J”l)(i- l)T;1.81 (61) 
c 

as in the Knudsen case, but now 

6, 1 - J,,(i - 1) F;i.Si (62) 

and 

- 70.81 
J”, = _ Pvap c 

(r; - 1) 
(63) 

5. NUMERICAL SOLUTIONS FOR A STATIONARY FRONT 

We now revert back to equations (43) and (46), 

which require numerical solution, and will compute 
the flux of water vapor emanating from a stationary 
evaporation front. We will again consider the planar 
isothermal case, but will allow S to be the correct value 
(1.25 if we approximate air as being entirely N,). 
Boundary conditions are given by equations (47) with 

_ Pvo = 0 (dry boundary) and paamb = 1. The solution 
method requires an iterative procedure which starts 
with a guess for J,,. Solutions are then obtained for p’, 
and iusing a marching integration starting from F = 1, 
where boundary conditions are known. The resulting 
value of p, obtained at F = fr is then checked against 
eVvap and a correction made in JVo for the next iteration. 

The number of iterations necessary varied from 3 for 

low flux problems to 50 or more for high flux problems. 
For concreteness in the following calculations, we will 
take 4 = 0.25, U; = 2, p. = 1 bar (lo5 N m-‘) To = 
3OOK(27”C),p = 2 x 10m5 kgms-‘,andD,,(p,, To) 
= 3 x lo-’ m2 s-‘, while varying temperature and 
permeability. The pore size R will be estimated from 
the capillary formula (19) 

The resulting profiles for the case T = 70°C (F = 
1.143) are shown in Fig. 3 for permeabilities ranging 
from lo-l6 to lo-l3 m*. Notice that as the per- 
meability is raised the pressure approaches unity 
everywhere and thus the number density profiles 
approach the diffusion limit results. For this low 
temperature case, the gas is mostly air and in fact as we 
approach zero permeability (and thus zero flux) the air 
density approaches that of the outside atmosphere 
everywhere within the pores. At higher temperature 
(Fig. 4) the fluxes are high enough to begin pushing air 
from the pores until at K = lo- ’ 3 m2 the gas is almost 
all water vapor. The behavior illustrated in Figs. 3 and 
4 is basically identical to that portrayed analytically in 
section 4. 

Next we examine the temperature dependence of the 
flux by plotting jVo vs T for different permeabilities in 

Fig. 5. As the permeability is increased, the values of 
the flux in the regions below and above 1OO’C (the 
boiling point for this example) behave quite differently. 

Below lOO”C, the flux saturates (as it must) to the 
diffusion limit which would apply if there were no 
porous medium at all. Above lOOC, however, there is a 
constant pressure gradient which, with a decreasing 
Bow resistance, gives an increasing flux. Consequently, 
for permeabilities 2 lo- ’ 3 m2, there is a large increase 
in flux as one crosses the boiling point. In fact, for K = 
lo-‘* m2 (the permeability of tight sand) a 2°C change 
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LEGEND 

r(m*) SYM FLUX E TJ 

,0-n- -.388 68. 23.5 

lo-=--- -250 .SS 2.31 

lo-‘9--- -.136.086 .74 

.5 2.0 

? 

FIG. 3. Density and pressure profiles for an isothermal drying 
problem at 70°C. i = 2 is the evaporation front position. 

in temperature at 100°C gives an order of magnitude 
increase in flux. This result corresponds with the 
intuitive notion of ‘boiling’, and is commonly invoked 
in calculations by assuming a vapor region boundary 
which follows the boiling temperature. However, as we 
approach values of K in the range 5 lo- l5 mz (the 
permeability of many common rocks, including tuffs, 
granite, etc.), we see that no abrupt change occurs at 
100°C. This is because for low permeabilities the flux is 
not diffusion limited below 100°C and consequently 
the character of the vapor transport remains the same 
as the boiling temperature is crossed, i.e. forced flow. It 
therefore follows that calculations involving low per- 
meability saturated materials above the boiling point 
should be done using a correct vapor transport model. 
Furthermore, for such problems the evaporation front 
(if there is one) will not necessarily follow the boiling 
isotherm. 

LEGEND 
x(&j SYM FLUX 6 ,, 

10-13 - -34.2 99. 23.! 

10-14 -.- -5.49 6.6 7.4 

10-15 ---- -1.72 .S6 2.3: 

,o-16 -__ -.69 ,066 .74 

T = 11O’C 

FIG. 4. Density and pressure profiles for an isothermal drying 
problem at 110°C. ? = 2 is the evaporation front position. 

LEGEND 

10 120 130 140 150 160 170 180 

T(W) 

FIG. 5. Flux of water vapor from a stationary evaporation 
front vs. sample temperature (uniform). 

6. EVAPORATlON FRONT MOTION 

We now turn our attention from the detailed 
transport mechanisms in the vapor region to the 
motion of the evaporation front itself. Since in this 
paper motion of the liquid phase is not being con- 
sidered, the front moves only when the liquid changes 
phase, i.e. evaporates. Mass balance at the front thus 
gives the following simple formula for the front velocity 
t4: 

This non-dimensionalizes to 

with 

G= -yJ, (66) 

Y = nOWpoy Tohlw, (67) 

where a, is the thermal diffusivity to be introduced later 
in connection with the heat equation. 

If we assume that vapor motion proceeds on a time 
scale short compared with front motion (u, >> u), then 
the water vapor flux .i, obeys the steady state con- 
tinuity equation in l-dim. 

1 a 

-4 > r- af 
rm J” = 0 (68) 
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where m is the geometry indicator 

0, planar, 

and 

m= 1, cylindrical, 

2, spherical. 

Solutions to equation (68) are 

J”F = J”, (69) 

where j,, is constant in space but varies with time 
through its dependence on the front position Ff. 
Combining equations (66) and (69) gives an equation 
of motion for Fr 

(70) 

We may determine the form of J,,(fr) for the case of 
constant temperature by returning to the derivation of 
the approximate equations (48) and (50). In these 
equations the term j,,,(i - 1) was obtained by in- 
tegrating jVO over the interval 1 to F. We may generalize 
this procedure by replacing ‘?y, by J,,,/P [equation 
(69)] and repeating the integral to get 

s iJ 
i-l m=O 

2 di = JVO x , lni 
L r” 

m=l 

I-! m=2. 
i 

(71) 

Notice that equation (48) evaluated at i = Yf shows 

dependence on Fr only in the term J,, (& - 1) since 
c(Fr) = &_,. Thus in equations (53), (54), (59) and (63), 
we may replace JVO(ff - 1) with the expressions in 
equations (71) evaluated at i = ?r, so that regardless of 
the dominant transport mechanism involved, 

m=O 

m=l (72) 
-1 

m = 2. 

Here Ff = 1 represents the position of the drying 
surface and C depends on temperature, 5, q, etc. but not 

on F; or i. 
There are now two classes of problems to solve 

which we will denote exterior and interior evaporation. 
In the former case, an object of finite size is dried from 
the outside; in the latter case (interior), an infinite 
domain with a finite sized cavity is dried from the 
inside out. Of course, the case m = 0 is neither exterior 
nor interior. We now present solutions to equations 
(70) and (72) for the five cases 

(a) m = 0 

-c ‘12 
J”, = - - . ( 1 w (74) 

Notice that in this case the flux decays with time as 
r-1/z as the front erodes farther into the material. 

(b) Exterior evaporation, m = 1 

This case is that of an infinitely long cylinder dried 
from the outside. Here J,, > 0, C < 0 and we have the 
implicit result 

and 

J”ll = g. 
I 

(75) 

Since ?r < 1, jV,, decays quickly as the front ap- 
proaches the origin. 

(c) Exterior evaporation, m = 2 
This is the case of a sphere dried from the outside. 

Again jy,, > 0, C < Oand the front position is found by 
solving the cubic equation 

2F; - 3$ + 1 = -6yC; (77) 

with 

Again J,, decreases dramatically as Ff -+ 0. 

(78) 

(d) Interior evaporation, m = 1 
Here we have drying from an infinitely long cylindri- 

cal cavity of radius i = 1 into an infinite medium. Now 
JV,, < 0, and the equations are identical in form to (b) 

above 

1 + 4yct- ( > 1’2 
r; = 

1 - 21nff 
(79) 

and 

Although equation (79) is not useful near 
In Ff = l/2, we see that for long times both Fr and J,, 
decay somewhat slower than the m = 0 case. 

(e) Interior evaporation, m = 2 
This case corresponds to drying from a spherical 

cavity ofradius r = 1 into an infinite medium. We have 
J,, < 0, C < 0 and rf is determined from [same 
equations as (b)] 

r; = 1 + ( - 2yCt)“2 (73) 1 I 2r?-3??+1= -6vCt (81) 
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with 

(82) 

in the vapor region and 

We see that for long times 

r; N_ (- 3ycq1:3 (83) 

and 

cTyo = c. (84) 

The latter two cases are particularly relevant to 
problems arising from the disposal of nuclear waste in 
geologic formations, since a heat-producing waste 
canister is implanted into small cavity within a 
larger formation. The water-bearing rock may then 
dry with an evaporation front moving outwards from 
the canister. Equations (80) and (84) imply that, for a 
cylindrical cavity, the flux will initially decay some- 
what slower than the planar case until the front is 
sufficiently far away from the canister. At that point 
since the cavity is of finite length, the problem may 
become more spherical than cylindrical. The flux of 
vapor into the hole may then approach a constant 
[equation (84)]. This effect arises from purely 
geometrical considerations, since the evaporation 
front area grows as the front recedes. A nearly 
saturating flux apparently related to the above theory 
has recently been seen in a heater test in tuff [18]. 

7. RESULTS FOR NON-ISOTHERMAL 
TRANSIENT PROBLEMS 

We now lift the isothermal restriction and solve the 
full set of equations (43), (46), (47) and (70) together 
with the heat equation. The primary motivation for 
doing this is to study the motion of the evaporation 
front relative to that of various isotherms. 

Denoting the vapor region (r < rf) by v and the 
liquid region (I > rr) by 1, and assuming a constant 
conductivity in each region, the heat equation for the 
matrix plus vapor is 

and that for the matrix plus liquid water is 

3T 

at - rm dr 
_!ep!g. 

( > 

(85) 

(86) 

The matching condition at the evaporation front is 

k,: -kVg =-LJ,m, 
! I 

(87) 
I ” 

where the k’s are effective thermal conductivities of 
matrix plus fluid and L is the latent heat of vapori- 
zation. Equations (85) and (86) non-dimensionalize to 

a? la 

( > 

,“a’i -=-- - 
at r” ai aF (88) 

in the liquid region. Here we have defined 

;=“vt. 
12 

The matching condition is 

where 
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(89) 

(90) 

(91) 

(92) 

Numerical solution of the above equations on a 
finite difference grid begins with a determination of the 
flux jy, for some initial evaporation front position. 
Consistent with assumption (7) in section 1, this is 
accomplished in the same manner as for a stationary 
front, as was detailed in section 5. The temperature 
field is next advanced in time using a fully implicit 
space-centered scheme which incorporates the match- 
ing condition (91) at the first mesh point below the 
evaporation front position. The time step is completed 
by explicitly advancing the evaporation front position 
according to (70). For sufficiently small time steps, it 
may be shown that the order of the above calculations 
is immaterial. 

Next we present solutions of the entire suite of 
equations for a selection of problems of interest. For all 
calculations in this section we will use L = 2.253 x lo6 
J kg-‘, k, = k, = 1.5 W m-l K-‘, c(, = LX,, = 5.1 x 
lo-’ m2 s-l and pw = 1000 kg me3 (the values for k 
and c( are for welded turf). Thus we have 6 = 0.028 and 
y = 0.044. 

The first problem is that of a front initially at i = 1 
moving in the positive f direction. The temperature is 
initially set at T = l(300 K) and at t = 0 the boundary 
temperature at i = 1 is raised to T = 1.277 (383 K) 
and held there. Figure 6 shows isotherm and evap- 
oration front position vs time for the planar case with K 

= lo- l6 m2. Notice that the evaporation front tem- 
perature remains constant to good accuracy. This is 
consistent with the assumptions of many authors, [8,9, 
10,191 that the front follows an ‘evaporation tempera- 
ture’ isotherm. This phenomenon arises somewhat 
accidentally, since for this particular temperature 
boundary condition and geometry, f/?” is a similarity 
variable [17] and the evaporation front also follows a 
? ” law. This result is contrasted in Fig. 7, where the 
same calculation in spherical coordinates shows the 
evaporation front crossing isotherms. In this case the 
isotherms move more slowly than does the evap- 
oration front due to the spherical geometry. 

One other case where the front follows an isotherm 
occurs when the permeability is large and the iso- 
therms propagate quickly into the medium. Here the 
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FIG. 6. Isotherm and evaporation front position vs time. Planar case with K = lo-l6 rn’, 

evaporation front stays at or near the boiling point, as outrun the isotherm, a drastic reduction in flux and 
shown in Fig. 8. This run is for spherical geometry front velocity would occur, allowing the isotherm to 
where it was seen in Fig. 7 that the front is normahy catch up. Similarly, the isotherm cannot far outrun the 
non-isothermal. Figure 8 shows results for K = evaporation front without the large increase in flux 
lo-” m2 and a high heat flux boundary condition, allowing the front to catch up. Even at high per- 
and the large slope of flux vs temperature (see Fig. 5) meability, however, thiscondition will not occur unless 
causes the front to oscillate stably around a tempera- the boiling isotherm is being driven into the material 
ture near the boiling point; for if the front were to faster than the front tends to recess. 
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0 f ._ 
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-i 

FIG 7. Isotherm and evaporation front position vs time. Spherical case with K = lo- I6 mz 
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FIG. 8. Isotherm and evaporation front position vs time. Spherical case with high heat flux boundary 
con&tion and K = 10-12mz. 
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8. CONCLUSION 

A formalism has been presented for the solution of 

evaporation front drying problems. The formalism is 
kinetic theory-based and includes both diffusion and 

viscous flow of a binary gas mixture through a porous 
medium. Previous simple treatments which ignore the 
presence of air in the pores are recovered as limits of the 
more general theory and are shown to be valid 

approximations in certain cases. 
Solutions presented of water vapor flux versus 

temperature for a stationary front show that the 

concept of ‘boiling’ is oflimited usefulness for materials 
of low permeability (below lo-l4 m2), while still 

retaining its normal interpretation for high perme- 
ability materials. This is important for heat transfer 
calculations done on tight saturated geological ma- 

terials in which the boiling point is exceeded, and 
demonstrates that for these cases the assumption of 

vapor only for regions with temperatures above the 
boiling point may not be valid. 

When the motion of the evaporation front is in- 
cluded toether with sample constant temperature 
solutions for the vapor region, useful information is 
obtained concerning the effect of geometry on the 
water loss rate. The latter decreases proportional to 

t- w for the planar case, and for drying occurring from 
a cavity, more slowly in cylindrical geometry, until for 
spherical geometry it approaches a constant. This 
occurs because the area of the evaporation front 
increases to compensate for the lower flux as the front 
propagates into the material. This result is significant 
and indicates that a dried spherical cavity in an infinite 
medium will, after a certain period of time, develop a 
water inflow rate which remains constant indefinitely. 

Finally, solutions are presented for the motion of 

isotherms and evaporation fronts for a transient drying 

problem with the heat equation included. Although 
the planar case (with an initially constant temperature 
suddenly raised and then held constant at the drying 

boundary) shows an isothermal evaporation front, this 
is not true as a general rule. Other calculations done in 
spherical geometry or with other boundary conditions 
on temperature show that the evaporation does not 
stay at an ‘evaporation temperature’ but in general 
crosses isotherms. 

Acknowledgement-This article was sponsored by the U.S. 
Department of Energy under Contract DE:ACO4-76- 
DPO0789. 

4. 

5. 

6. 

7. 

REFERENCES 

E. Buckingham, Studies in the movement of soil moisture, 
U.S. Dept. Agr. Bur. Soils. Sull. 38, 29-61 (1907). 
N. H. Ceaglske and 0. A. Hougen, Drying granular 
solids, Ind. Engng Chem. 29, 805-813 (1937). 
Y. K. Sherwood, Application of the theoretical diffusion 
equations to the drying of solids, Trans. Am. Inst. Chem. 
Engrs 27, 190-202 (1931). 
C. L. D. Huang, H. H. Siang and C. H. Best, Heat and 
moisture transfer in concrete slabs, Int. J. Heat Mass 
Transfer. 22, 257-266 (1979). 
R. D. Gibson, M. Cross and R. W. Young, Pressure 
gradients generated during the drying of porous shapes, 
Int. J. Heat Mass Transfer, 22, 827-830 (1979). 
J. J. Hohlfelder and G. R. Hadley, Laboratory studies of 
water transport in rock salt, Lett. Hear Mass Transfer 6, 
271-279 (1979). 
0. A. Hougen, H. J. McCauley and W. R. Marshall, Jr., 
Limitations of diffusion equations in drying, Trans. Am. 
Inst. Chem. Engrs 36, 183-210 (1940). 



1522 G. RONALD HADLEY 

8. L. N. Gupta, An approximate solution of the genera- 
lized Stefan’s problem in a porous medium, In?. J. Heat 
Mass Transfer, 17, 313-321 (1974). 

9. M. D. Mikhailov, Exact solution of temperature and 
moisture distributions in a porous half-space with mov- 
ing evaporation front, Inc. J. Heat Mass Transfer 18, 
797-804 (1975). 

10. M. Cross, R. D. Gibson and R. W. Young, Pressure 
generation during the drying of a porous half-space, lnt. 
J. Heat Mass Transfer, 22, 47-50 (1979). 

11. R. B. Evans, III, G. M. Watson and E. A. Mason, Gaseous 
diffusion in porous media at uniform pressure, J. Chem. 
Phys. 35, 2076-2083 (1961). 

12. R. B. Evans, 111,G. M. Watson and E. A. Mason,Gaseous 
diffusion in porous media II. Effect of pressure gradients, 
J. Chem. Phys. 36, 1894-1902 (1962). 

13. E. A. Mason, R. B. Evans, III andG. M. Watson, Gaseous 

diffusion in porous media III. Thermal transpiration, J. 
Gem. Phvs. 38. 1801-1826 (1963). 

14. E. A. Mason, A. P. Malinaiskas’and R. B. Evans, III, 
Flow and diffusion of gases in porous media, J. Chem. 
Phys. 46, 3199-3216 (1967). 

15. J. 0. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular 
theory ofgases and liquids, p. 516-517. Wiley, New York 
(1954). 

16. G. R. Youngquist, Diffusion and flow of gases in porous 
solids, fnd. Eng. Chem. 62, 52-63 (1970). 

17. E. R. G. Eckart and R. M. Drake, Jr., Analysis of Heat and 
Mass Transfir. p. 787. McGraw-Hill (1972). 

18. J. K. John&on& and K. Wolfsbert, Sandia National 
Laboratories Report, SAND80-1464. D. 83 (19801. 

19. S. H. Cho, An exact solution of the coupled phase change 
problem in a porous medium, Int. J. Heat Mass Transfer 
18, 1139-1142 (1975). 

TRAITEMENT THEORIQUE DE L’EVAPORATION. FRONT DE SECHAGE 

R&urn&On prtsente un formalisme pour I’icoulement for& et la diffusion d’un mllange binair gazeux i 
travers un milieu poreux. Les Cquations sont privilCgie%s pour traiter la region de vapeur d’un matCriau 
poreux en tours de sBchage avec un modtle de front d’haporation. On presente des solutions pour diffkrentes 
permlabilitis et temp&atures; elles donnent les conditions pour lesquelles I’air est present dans les pores et 
elles permettent d’ktudier I’utiliti du concept “d’dbullition” pour le ichage de mattriaux faiblement 
permiables. Le mouvement du front d’&aporation et la perte en eau sonte examin& pour diffkrentes 

giomitries curvilignes, i la fois analytiquement et numlriquement. 

THEORETI~CHE ABHANDLUNG UBER DIE vERDUNSTUNGSFRONT BEI DER TROCK- 
NUNG 

Zusammenfassung-Es wird ein allgemeines Verfahren fiir kombinierte Diffusion und erzwungene 
StrGmung eines binzren Gasgemisches durch ein poriises Medium beschrieben. Die erhaltenen Gleichungen 
werden dann spezialisiert, damit sich der Dampfbereich des pordsen Mediums behandeln ItiBt, das 
entsprechend dem Model1 einer zuriickweichenden Verdunstungsfront austrocknet. Die Liisungen fiir 
verschiedene Durchlhsigkeiten und Temperaturen zeigen die Bedingungen auf, unter denen sich Luft in den 
Poren befindet, und erlauben es, die Anwendbarkeit des “Siede”-Konzepts auf die Trocknung von wenig 
druchllssigen Materialien zu beurteilen. Bewegungen der Verdunstungsfront und Wasserverlustrate werden 

sowohl analytisch als such numerisch fiir verschiedene gekriimmte Geometrien untersucht. 

TEOPETMYECKOE MCCJIEAOBAHWE l-lPO~ECCA CYIIIKM nPM 3AI-JIYEJIEHMM 
OPOHTA MCIlAPEHMlI 

hHOTa~n-npeLUlO~cH 06mel MaTeMaTWeCKHfi IjlOpMaJIH3M LLJIR OnHCaHAR OAHOBpeMeHHblX 

npO"eCCOB &@y3HI( H BbIHyW,eHHOrO Te'IeHtiR CMeCH 6uHapHoro ra3a 'lepc3 IlOpWZTylo CpeAy. 

nO.NyVeHHble ypaBHeHm 3aTeh4 mnonbsymrcn nns~ onwatuui TeSemiK napa B nopecroM MaTepHane, 
Cy",Ka KOTOpOrO npOBOArtTCSl B COOTBeTCTBHH C MOlleJlbKI 3arny6nemia @pOHTa HCHapeHHK. Pel"eHHK, 

nonyqeHnb*e mn pa3nwim~x 3Haqetiak npomuaekiocTei? w Tehmeparyp, n03Bonmo-r 0npenenaTb 

yCJ,OBW,. npk, KOTOpbIX B nOpaX npEiCyTCTByeT B03LIyX, 't-r0 Mel B03MO~HOCTb paCCMaTpHBaTb 

npWMeHAMOCTb nOHFiTAR “KUneHHe"K CylllKe MaTepHt?JIOB C MaJIOfi IlpOH&i~aeMOCTb~. .‘iHaJIkiTWtWKH 

H wcnemo mcnenym-rca nepebrememie @poHTa mnapeHm ki ksHTeHwBHocTb acnapeHun Bonbl 

&"ll pa3JlrtqHbIX KpHBOJlHHeihbIX reOMeTpH8. 


